6. LOGS AND
EXPONENTIALS

86.1. Powers

If x is any number, and n is a positive integer, we define
the power X" to mean x.x.x ...x with n factors.
So x!=x

X2 = X.X

X3 = X.X.X
If we list the powers of x we get a geometric sequence
X, X2, X3, ...
Each time we add 1 to the index (that’s the integer above
the x) we multiply the power by x. Working backwards,
every time we reduce the index by 1 we divide by x.
So we should define

Theorem 1 (Index Laws): For all integers m, n and all
real numbers x, y we have:

(1) 6y =xm

(2)x"=3;

(3) (xy)" = x"y";
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(4) x™x" = xmn,
Proof: If m, n are positive it’s just a matter of counting
the numbers of factors. If one or both is zero these are
easily checked. If one or both is negative it’s not quite
straightforward, though not really that difficult — just a bit
tedious. So let’s omit the proof shall we? %

Fractional powers can be defined so as to fit in with the
index laws. For example what is 2% ? Let’s write 2% =y,
Then y?=2%2%=2%*"% =21 =2, S0 2% is a square root of
2. Logically there is no reason at this stage why we
couldn’t define 2% = —2, but if we did it would cause
severe problems later on. So let’s choose to define 2% =
\2, the positive square root.

When it comes to defining 2'® we’d have no choice.
There’s only one real cube root of 2 and we would have
to define it to be 2% to fit in with the index laws.

If m, n are integers with n > 0, and x is a real number, we
define x™" to be the positive n’th root of x™. In this way
we’ll have defined xY for all rational numbersy. Of course
we’d have to prove the index laws all over again, in this
enlarged environment. It is not difficult to do this — just
messy and tedious. Some proofs are really enlightening
and should be gone through. Other proofs are best left
unproved! Just so long as you realise that, if you were
sceptical, that I could write out a proof for you.
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86.2. What Do We Mean by 2*?

What does 2* mean for an irrational numbers? What, for
example, does 22 mean? The answer lies in the concept
of limits. Although \fz Is irrational it can be approximated
by rational numbers. If we write out the decimal
expansion of V2 = 1.41421356.... we can take the
sequence

1,1.4,1.41,1.414,1.4142,1.41421, 1.414213, ...

Each of these is a rational number. We could write the

sequence as:
14 141 1414 14142 141421 1414213

1. 70100 1000 * 10000 * 100000 * 1000000 * **

Because all of these are rational numbers we can define:
21 214 21 41 21 414 21 4142 21 41421 21 414213

in terms of 10 th roots of 214 100th roots of 2141 and so on.

It can be shown that this sequence of real numbers will
approach a limit. We define that limit to be the value of

272 There are many other sequences of rational numbers

that approach \fZ and it can be shown that if we raise 2 to
each of them we’ll get a sequence that approaches the
same limit as before.

So we define 2% as the limit of:

2X1 2X2 2X3 ...
for any sequence Xi, Xz, Xs, ... that approaches x.
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This sounds all very technical. Anything to do with limits
does get rather hard going. In practice if you had to draw
the graph of y = 2* you’d plot the points for certain
rational values of x and join these points by a smooth
curve.

In the same way we can define a* for all real numbers a >
0.
Of course 1* equals 1 for all values of x.

86.3. Logs

Every positive number is a power of 2. For example
233219280% {5 very, very close to 10 and there’s some
number vy, very, very
close to 3.321928095
where 2Y is exactly
equal to 10. This =&
number is called “the
logarithm of 10 to the
base 2”.

The numbery for which 2¥ = x is called the logarithm of
X to the base 2.
It’s written y = logax.

Example 1: Find log,128.
Solution: Since 27 = 128 it follows that log,128 = 7.
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Example 2: Find log,(1/8).
: .1 :
Solution: Since 8= 273 it follows that logy(1/8) = 3.

If b > 1, the logarithm of x to the base b is defined to be
that power of b which exactly equals x.
It is written logpX.

A useful slogan to remember is:
Logs are powers and powers
are logs

Example 3: Find logi,1,000,000.

Solution: One million is what power of 10? The answer
is 10% Logs are powers and powers are logs. So
109101,000,000 = 6.

Example 4: Find logs1.
Solution: 1 =3%so logsl = 0.

In fact, since b® = 1 for any base, the logarithm of 1 is
zero, for any base.

Example 5: Find logs0.

Solution: For what y is 5¥ = 0? The answer is that there is
no such y and so logs0 doesn’t exist.
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In fact, for any base b, logpx is undefined if x < 0. That’s
because b is always positive. It can never equal zero or a
negative number.

Theorem 2: For all b, ¢, x, y with b, ¢ > 1:
(1) logn(xy) = logpx + logpy;

X
(2) Iogb@ = loguX — logpy;
(3) logu(x’) = y.logpx;

(4) logex = Bg_b

Proof: These are mostly just the index laws turned
around.

Let X = logpX, Y = logpy and B = logcb Then b* =x, bY =
y and cB = b.

(1) xy = b*.bY = b**Y,

Hence logy(xy) = X +Y = logyx + logpy.

(2) logpx = Iogb{@ } Iogb@ + logpy.

(3) XY = (bX)¥ = b s0 logy(XY) = Xy = ylogpX.
(4) X = bX — (CB)X — CBX
logeX  logex

- logex = BX and so logex = X ="p= =50}

O

Theorem 2 displays the reason why logarithms were first
invented. Back in the 17" century if you wanted to
multiply two large numbers you didn’t have the
convenience of calculators. To multiply 245961 by 28284
would require a substantial long multiplication. (At least
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it was better than in previous centuries when it would all
have to be done using Roman numerals!)

In 1514 Napier published the first table of logarithms. to
base 10. To multiply two numbers you looked up their
logs, added them, and then looked up a table of
antilogarithms (this is simply a table of 10*. To divide, we
subtract the logs and to find the n’th root we simply divide
the log by n.

The base that was chosen for these tables was b = 10. The
advantage of this is that you could use them for decimal
numbers without having to worry too much about the
position of the decimal point.

Example 6: 10910276.3977 = 10910(100*2.763977) = 2
+|09102763977

So tables were constructed giving just logarithms of
numbers between 1 and 10. Logarithms of numbers
smaller than 1 or larger than 10 can be easily expressed in
terms of numbers in this range. Six figure logarithms
would occupy a whole book. Four figure logarithms just
needed two pages.

A mechanical version of log tables was invented a few
years after Napier although the modern version was
invented in the mid 19™ century. This is called a ‘slide
rule’. In its most common form it consists of a strip of
wood that slides in a slot in a wider strip of wood. There
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are markings on both the base and the slider, representing
numbers from 1 to 10. These are spaced according to their
logarithms.

To multiply two numbers you
place the 1 on the slider against the
first number on the larger piece. =\ "
Opposite the second number on the
slider is the answer. You ignore
decimal points and work out where to put the decimal
point in the answer. So multiplying 32.5 by 706 would use
the same operation as multiplying 3250 by 0.00706. In
both cases you’d get 229 and you would have to work out
that this represented 22900 in the first case and 22.9 in the
latter. The slide rule basically adds distances, and if the
distances represent logarithms, they add logarithms.

[———log(3) ——f

1 2 3 4 5 IE 7 B lQ Il
TTTITTTIT ']”'['l'l'i'l'i'{'J'I'iMWMHHHMW
Il | Ig ! 3 4 5 B 7 B 91

«—log(2) —| ‘

log(6)

With care slide rules could give about three significant
figures in the answer. Not all 3 digit numbers are marked.
One usually has to estimate the third figure by mentally
subdividing the gap between numbers.
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Slide rules have been made in many forms. There are
circular slide rules and even cylindrical slide rules. A

cylindrical slide rule has

the scale spiralling around

and around giving a much

greater effective length and

therefore greater accuracy.
Up until the 1970’s a slide rule was a symbol of the
engineer. Just as a doctor is always seen with a
stethoscope around her neck so an engineer in the 60’s
would always be seen with a slide rule sticking out of his
pocket.

/ |

These days we don’t need log tables or slide rules to
multiply numbers. That makes them obsolete. But
logarithms are useful for more than multiplying and
dividing numbers. They are a vital tool in mathematics
and there are many places where you need to know the
value of a logarithm.

For example you’ve probably heard of the term ‘decibel’
as a measure of loudness. A ‘bel’, named after Alexander
Graham Bell, represents a 10 fold increase in loudness, as
measured by the power of the output. A decibel is one
tenth of a bel. The scale is logarithmic in so far as a 100
fold increase in power is a 20 decibel increase in loudness.
If R is the ratio of the power given out by two sounds then
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the louder sound is log;oR number of bels and so the
louder sound is 10logioR decibels louder than the other.

Another measurement that is based on logarithms to the
base 10 is the Richter scale for earthquakes. If E is the
amount of energy released by an earthquake then its
magnitude on the Richter scale is logiE. So an
earthquake that has magnitude 6.5 is 10 times more
powerful than one that has magnitude 5.5 and is 100 times
more powerful than one with magnitude 4.5.

§86.4. Powers and Logs on Calculators
Most people know how to use calculators to multiply
numbers on a calculator. Another thing we may need to
do is to compute powers.

XY: For powers there’s an XY button. Use this, as follows.
(2) Input the base number x.

(2) Press the [x’ | button.

(3) Now input the powery.

(4) Press the [=] button.

The answer is now displayed.

Example 7: Find 3.56"2°.
Solution: 10472.98509.

There’s a special number, called ‘e’ whose powers are
quite important in mathematics — so much so that your
scientific calculator will have a button for computing e*.
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This is called the exponential function. To understand
the significance of e you’ll need to know a little bit of
calculus. Suffice to know that e is just a number, a bit like
7, whose value can’t be expressed as an exact decimal.
Approximately e is 2.71828. In preparation for when
you’ll need to compute e* here is how to use your
calculator to compute it.

e*: You could use the x¥ button but you’d have to input
the base 2.71828. To save you the trouble most
calculators have an e* button.

(1) Input x.

(2) Press the | | button.

On many calculators the e* is not written on a button but
Is written above the “LN” button. To get €* in such cases
you have to press the key and follow it by the
key.

If you can’t find an the key you should have a key
marked . Use this instead.

The answer is now displayed.

Example 8: Find 293,
Solution: e*9%3 = 18.27072405.

Your calculator will have two log keys, one for base 10

and one for base e. If you want any other base you’ll have
to calculate it, using Theorem 2 (4).
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There are three sets of notation that are used for these two
bases. Look carefully at your calculator to see which one

IS yours.
TYPE1l |[TYPE2 |TYPE3
base 10 | logso 10010 LOG
base e |loge log LN
You can see the potential for confusion. On some

calculators log means base 10 while on others it means
base e. If you also have a key marked LN (standing for
‘natural logarithm”) then you know that LOG means base
10. Otherwise it will mean base e.

log1ox:

(1) Input x.

(2) Press the key.

If you don’t have one of these try a key marked and
use it instead.

(3) The answer is now displayed.

log x: This is the natural logarithm, to the base ‘e.

(1) Input x.

(2) Press the key.

If you don’t have one of these look for a key marked
and use this instead.

(3) The answer is now displayed.
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If you ever want logs to other bases you can get them by

: logx LNX
using the formula: logpx = log b O I 'NDb

Example 9: Find log 16.8394.

Solution: log 16.8394 = 2.82372139.

If you got 1.226326613 you must have pressed the ‘log’
key instead of the loge or LN key.

Example 10: Find log,100.

. _logl00 2
Solution: log,100 = log2 ~ 0.2010 — 6.438.

Of course we can use logs to the base e and get 109,100 =
LN 100 4.605
LN2 06931 - 06438
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