
 129 

6. LOGS AND 

EXPONENTIALS 
 

§6.1. Powers 
If x is any number, and n is a positive integer, we define 

the power xn to mean x.x.x ...x with n factors. 

So x1 = x 

     x2 = x.x 

     x3 = x.x.x 

If we list the powers of x we get a geometric sequence 

x, x2, x3, ... 

Each time we add 1 to the index (that’s the integer above 

the x) we multiply the power by x. Working backwards, 

every time we reduce the index by 1 we divide by x. 

So we should define 

x0 = 1 

x−1 = 
1

x
  

x−2 = 
1

x2  

.......... 

 

Theorem 1 (Index Laws): For all integers m, n and all 

real numbers x, y we have: 

(1) (xm)n = xmn; 

(2) x−n = 
1

xn ; 

(3) (xy)n = xnyn; 
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(4) xmxn = xm+n. 

Proof: If m, n are positive it’s just a matter of counting 

the numbers of factors. If one or both is zero these are 

easily checked. If one or both is negative it’s not quite 

straightforward, though not really that difficult – just a bit 

tedious. So let’s omit the proof shall we?  

 

Fractional powers can be defined so as to fit in with the 

index laws. For example what is 2½ ? Let’s write 2½ = y. 

Then y2= 2½.2½ = 2½ + ½  = 21 = 2. So 2½ is a square root of 

2. Logically there is no reason at this stage why we 

couldn’t define 2½ = −2, but if we did it would cause 

severe problems later on. So let’s choose to define 2½ = 

2, the positive square root. 

 

When it comes to defining 21/3 we’d have no choice. 

There’s only one real cube root of 2 and we would have 

to define it to be 21/3 to fit in with the index laws. 

 

If m, n are integers with n > 0, and x is a real number, we 

define xm/n to be the positive n’th root of xm. In this way 

we’ll have defined xy for all rational numbers y. Of course 

we’d have to prove the index laws all over again, in this 

enlarged environment. It is not difficult to do this – just 

messy and tedious. Some proofs are really enlightening 

and should be gone through. Other proofs are best left 

unproved! Just so long as you realise that, if you were 

sceptical, that I could write out a proof for you. 
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§6.2. What Do We Mean by 2x? 
What does 2x mean for an irrational numbers? What, for 

example, does 22  mean? The answer lies in the concept 

of limits. Although 2 is irrational it can be approximated 

by rational numbers. If we write out the decimal 

expansion of 2 = 1.41421356…. we can take the 

sequence 

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, … 

Each of these is a rational number. We could write the 

sequence as: 

1, 
14

10
 , 

141

100
 , 

1414

1000
 , 

14142

10000
 , 

141421

100000
 , 

1414213

1000000
 , … 

Because all of these are rational numbers we can define: 

21, 21.4, 21.41, 21.414, 21.4142, 21.41421, 21.414213, … 

in terms of 10’th roots of 214, 100th roots of 2141 and so on. 

 

It can be shown that this sequence of real numbers will 

approach a limit. We define that limit to be the value of 
22 . There are many other sequences of rational numbers 

that approach 2 and it can be shown that if we raise 2 to 

each of them we’ll get a sequence that approaches the 

same limit as before. 

 

So we define 2x as the limit of: 

2x1,  2x2,  2x3,  …. 

for any sequence x1, x2, x3, … that approaches x. 
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This sounds all very technical. Anything to do with limits 

does get rather hard going. In practice if you had to draw 

the graph of y = 2x you’d plot the points for certain 

rational values of x and join these points by a smooth 

curve. 

 

In the same way we can define ax for all real numbers a > 

0. 

Of course 1x equals 1 for all values of x. 

 

§6.3. Logs 
Every positive number is a power of 2. For example 

23.321928095 is very, very close to 10 and there’s some 

number y, very, very 

close to 3.321928095 

where 2y is exactly 

equal to 10. This 

number is called “the 

logarithm of 10 to the 

base 2”. 

 

The number y  for which 2y = x is called the logarithm of 

x to the base 2. 

It’s written y = log2x. 

 

Example 1: Find log2128. 

Solution: Since 27 = 128 it follows that log2128 = 7. 
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Example 2: Find log2(1/8). 

Solution: Since 
1

8
 = 2−3 it follows that log2(1/8) = −3. 

 

If b > 1, the logarithm of x to the base b is defined to be 

that power of b which exactly equals x. 

It is written logbx. 

 

A useful slogan to remember is: 

Logs are powers and powers 

are logs  

 

Example 3: Find log101,000,000. 

Solution: One million is what power of 10? The answer 

is 106. Logs are powers and powers are logs. So 

log101,000,000 = 6. 

 

Example 4: Find log31. 

Solution: 1 = 30 so log31 = 0. 

 

In fact, since b0 = 1 for any base, the logarithm of 1 is 

zero, for any base. 

 

Example 5: Find log50. 

Solution: For what y is 5y = 0? The answer is that there is 

no such y and so log50 doesn’t exist. 
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In fact, for any base b, logbx is undefined if x  0. That’s 

because by is always positive. It can never equal zero or a 

negative number. 

 

Theorem 2: For all b, c, x, y with b, c > 1: 

(1) logb(xy) = logbx + logby; 

(2) logb






x

y
  = logbx − logby; 

(3) logb(x
y) = y.logbx; 

(4) logbx = 
logcx

logcb
 . 

Proof: These are mostly just the index laws turned 

around. 

Let X = logbx, Y = logby and B = logcb Then bX = x, bY = 

y and cB = b. 

(1) xy = bX.bY = bX+Y. 

Hence logb(xy) = X + Y = logbx + logby. 

(2) logbx = logb














x

y
 y  = logb







x

y
  + logby. 

(3) xy = (bX)y = bXy so logb(x
y) = Xy = ylogbx. 

(4) x = bX = (cB)X = cBX. 

 logcx = BX and so logbx = X = 
logcx

B
  = 

logcx

logcb
 . ☺ 

 

Theorem 2 displays the reason why logarithms were first 

invented. Back in the 17th century if you wanted to 

multiply two large numbers you didn’t have the 

convenience of calculators. To multiply 245961 by 28284 

would require a substantial long multiplication. (At least 



 135 

it was better than in previous centuries when it would all 

have to be done using Roman numerals!) 

 

In 1514 Napier published the first table of logarithms. to 

base 10. To multiply two numbers you looked up their 

logs, added them, and then looked up a table of 

antilogarithms (this is simply a table of 10x. To divide, we 

subtract the logs and to find the n’th root we simply divide 

the log by n. 

 

The base that was chosen for these tables was b = 10. The 

advantage of this is that you could use them for decimal 

numbers without having to worry too much about the 

position of the decimal point. 

 

Example 6: log10276.3977 = log10(100*2.763977) = 2 

+log102.763977. 

 

So tables were constructed giving just logarithms of 

numbers between 1 and 10. Logarithms of numbers 

smaller than 1 or larger than 10 can be easily expressed in 

terms of numbers in this range. Six figure logarithms 

would occupy a whole book. Four figure logarithms just 

needed two pages. 

A mechanical version of log tables was invented a few 

years after Napier although the modern version was 

invented in the mid 19th century. This is called a ‘slide 

rule’. In its most common form it consists of a strip of 

wood that slides in a slot in a wider strip of wood. There 
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are markings on both the base and the slider, representing 

numbers from 1 to 10. These are spaced according to their 

logarithms. 

 

To multiply two numbers you 

place the 1 on the slider against the 

first number on the larger piece. 

Opposite the second number on the 

slider is the answer. You ignore 

decimal points and work out where to put the decimal 

point in the answer. So multiplying 32.5 by 706 would use 

the same operation as multiplying 3250 by 0.00706. In 

both cases you’d get 229 and you would have to work out 

that this represented 22900 in the first case and 22.9 in the 

latter. The slide rule basically adds distances, and if the 

distances represent logarithms, they add logarithms. 

 

With care slide rules could give about three significant 

figures in the answer. Not all 3 digit numbers are marked. 

One usually has to estimate the third figure by mentally 

subdividing the gap between numbers. 
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Slide rules have been made in many forms. There are 

circular slide rules and even cylindrical slide rules. A 

cylindrical slide rule has 

the scale spiralling around 

and around giving a much 

greater effective length and 

therefore greater accuracy. 

 

Up until the 1970’s a slide rule was a symbol of the 

engineer. Just as a doctor is always seen with a 

stethoscope around her neck so an engineer in the 60’s 

would always be seen with a slide rule sticking out of his 

pocket. 

 

These days we don’t need log tables or slide rules to 

multiply numbers. That makes them obsolete. But 

logarithms are useful for more than multiplying and 

dividing numbers. They are a vital tool in mathematics 

and there are many places where you need to know the 

value of a logarithm. 

 

For example you’ve probably heard of the term ‘decibel’ 

as a measure of loudness. A ‘bel’, named after Alexander 

Graham Bell, represents a 10 fold increase in loudness, as 

measured by the power of the output. A decibel is one 

tenth of a bel. The scale is logarithmic in so far as a 100 

fold increase in power is a 20 decibel increase in loudness. 

If R is the ratio of the power given out by two sounds then 
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the louder sound is log10R number of bels and so the 

louder sound is 10log10R decibels louder than the other. 

 

Another measurement that is based on logarithms to the 

base 10 is the Richter scale for earthquakes. If E is the 

amount of energy released by an earthquake then its 

magnitude on the Richter scale is log10E. So an 

earthquake that has magnitude 6.5 is 10 times more 

powerful than one that has magnitude 5.5 and is 100 times 

more powerful than one with magnitude 4.5. 

 

§6.4. Powers and Logs on Calculators 
Most people know how to use calculators to multiply 

numbers on a calculator. Another thing we may need to 

do is to compute powers. 

 

xy:  For powers there’s an xy button. Use this, as follows. 

(1) Input the base number x. 

(2) Press the  xy  button. 

(3) Now input the power y. 

(4) Press the   =  button. 

The answer is now displayed. 

 

Example 7: Find 3.567.29. 

Solution: 10472.98509. 

 

There’s a special number, called ‘e’ whose powers are 

quite important in mathematics – so much so that your 

scientific calculator will have a button for computing ex. 
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This is called the exponential function. To understand 

the significance of ex you’ll need to know a little bit of 

calculus. Suffice to know that e is just a number, a bit like 

, whose value can’t be expressed as an exact decimal. 

Approximately e is 2.71828. In preparation for when 

you’ll need to compute ex here is how to use your 

calculator to compute it. 

 

ex: You could use the xy button but you’d have to input 

the base 2.71828. To save you the trouble most 

calculators have an ex button. 

 

(1) Input x. 

(2) Press the  ex  button. 

On many calculators the ex is not written on a button but 

is written above the “LN” button. To get ex in such cases 

you have to press the  INV  key and follow it by the  LN  

key. 

If you can’t find an the  ex  key you should have a key 

marked  exp  . Use this instead. 

The answer is now displayed. 

 

Example 8: Find e2.9053. 

Solution: e2.9053 = 18.27072405. 

 

Your calculator will have two log keys, one for base 10 

and one for base e. If you want any other base you’ll have 

to calculate it, using Theorem 2 (4). 
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There are three sets of notation that are used for these two 

bases. Look carefully at your calculator to see which one 

is yours. 

 

 TYPE 1 TYPE 2 TYPE 3 

base 10 log10 log10 LOG 

base e loge log LN 

 

You can see the potential for confusion. On some 

calculators log means base 10 while on others it means 

base e. If you also have a key marked LN (standing for 

‘natural logarithm’) then you know that LOG means base 

10. Otherwise it will mean base e. 

 

log10x: 

(1) Input x. 

(2) Press the  log10  key. 

If you don’t have one of these try a key marked   log  and 

use it instead. 

(3) The answer is now displayed. 

 

log x: This is the natural logarithm, to the base ‘e. 

(1) Input x. 

(2) Press the  LN  key. 

If you don’t have one of these look for a key marked   loge  

and use this instead. 

(3) The answer is now displayed. 
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If you ever want logs to other bases you can get them by 

using the formula: logbx = 
log x

log b
  or 

LN x

LN b
 . 

 

Example 9: Find log 16.8394. 

Solution: log 16.8394 = 2.82372139. 

If you got 1.226326613 you must have pressed the ‘log’ 

key instead of the loge or LN key. 

 

Example 10: Find log2100. 

Solution: log2100 = 
log10100

log102
 = 

2

0.2010
  = 6.438. 

Of course we can use logs to the base e and get log2100 = 
LN 100

LN 2
 = 

4.605

0.6931
 = 6.6438. 
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